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Abstract

The diffusion approximation is generalized to arbitrary locally isotropic participating media. It proves to be an approximate special
solution of the full equation of radiative transfer accounting for absorption, scattering, and emission. This special solution must be com-
pleted with a solution of the radiative transfer equation without emission term in order to match the boundary conditions for the radi-
ative field. Applied to combined heat and radiative transfer this scheme offers distinct computational advantages and broad applicability.
Following these ideas a simple and robust method for one-dimensional radiation–conduction computations is constructed and verified.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Thermal radiative transport in gases, liquids and amor-
phous solids is well described by the equation of radiative
transfer [1–3]. To find analytical or numerical solutions of
the equation of radiative transfer is, in general, a task of
considerable complexity even if additional simplifying
assumptions as isotropic scattering, gray materials etc. are
taken [1,4,5]. It is, therefore, gratifying that, with the Rosse-
land or diffusion approximation [6], a simplifying approach
was found to calculate, if not the complete radiation field,
but at least the flow of the radiant energy characterizing
the net energy exchange with the medium in the limit of high
optical density. In this approximation, the flow of the radi-
ant energy is proportional to the temperature gradient in
the medium. The diffusion approximation is usually derived
for isotropic scattering [6,7,1] but, considered as a phenom-
enological law, works quite well also in more general situa-
tions [8] at least for regions far from boundaries.

Near boundaries, the diffusion approximation for the
radiative flow may be rather poor. From a principal point
of view, an even more important shortcoming is that it does
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not allow to properly formulate the boundary conditions
for the radiative field since it yields only a partial informa-
tion about this quantity. This shortcoming is evident for
the problem of combined heat conduction and radiative
energy transport. The heat flow and the radiative energy
flow in the diffusion approximation are both proportional
to the temperature gradient. They both vanish on thermally
isolated boundaries. The diffusion approximation can,
therefore, not be the only contribution to the radiative flow
in this situation. The partial information on the radiative
field may appear sufficient if attention is paid not primarily
to the radiative field in the participating medium but rather
to the question how the presence of a participating medium
influences the radiative energy exchange between material
bodies. The radiative flow through the medium seems then
to be the important quantity for which the diffusion
approximation provides a useful approximation. However,
satisfactory results are obtained only under certain rather
restricting conditions [1, 15.3] and if the diffusion approxi-
mation is completed with suitable, self consistent boundary
conditions for the radiative flow leading to jump boundary
conditions for the temperature [7] at the boundary between
two bodies in thermal contact and to a value of the temper-
ature gradient different from zero at the boundaries of a
participating and thermally isolated medium.
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Nomenclature

a absorption coefficient (m�1)
A absorption coefficient for two-flux model (m�1)
cp specific heat per volume for constant pressure

(J m�3 K�1)
C1 first radiation constant, C1 = 1.190044 �

1020 W m�2 nm4 sr�1

C2 second radiation constant, C2 = 1.438769 �
107 nm K

~e,~e0 unit vectors in three dimensions indicating direc-
tions

D+, D� coefficients in solution of homogeneous two-flux
equations, Eqs. (41) and (42), (W m�2)

E+, E� spectral radiance in positive/negative x-direc-
tion (W m�2 nm�1)

F spectral radiance integrated over 4p solid angle
(W m�2 nm�1)

h enthalpy per volume (J m�3)
~J spectral radiative power flow (W m�2 nm�1)
~JQ heat flow (W m�2)
L spectral radiance (W m�2 nm�1 sr�1)
Ln expansion functions of the special solution of

the equation of radiative transfer, Eq. (15),
(W m�2 nm�1 sr�1)

N incident radiative flux (W m�2)
Pl Legendre polynomial of degree l

q emission term in two-flux equations, Eq. (40),
(W m�2)

RN residuum of the Nth approximation to a solu-
tion of the equation of radiative transfer, Eqs.
(15) and (18), (W m�2 nm�1 sr�1)

s scattering coefficient (m�1)
S scattering coefficient for two-flux model (m�1)
W Eq. (43) (m�1)
Yl,m spherical harmonic of order l
~x, ~y position vectors (m)

Greek symbols

dm0;m Kronecker symbol: dm0;m ¼ 1 if m0 = m, dm0;m ¼ 0
if m0 6¼m

$ gradient operator
g auxiliary quantity, Eq. (78)
h auxiliary quantity, Eq. (59)
jhrt coefficient of heat and radiative transport, Eq.

(35), (J m�1 K�1)
jQ coefficient of heat conduction (J m�1 K�1)
k wavelength (nm)
q1 reflectivity of thermostat, Eq. (49)
U phase function (sr�1)
U integral operator with kernel U
/l eigenvalue of U, Eq. (4)
W integral operator, Eq. (12), (m)
W kernel of the operator W, Eq. (11), (m sr�1)
wl eigenvalue of W, Eq. (13), (m)
weff

1 inverse of Rosseland mean attenuation coeffi-
cient, Eq. (31), (m)

rB Stefan–Boltzmann constant, rB = 5.6605 � 10�8

(W m�2 K�4)
s difference to surface temperature (K)
dXð~eÞ element of solid angle in direction~e (sr)

Subscripts

bb blackbody
rad radiative
inc incident

Superscripts

h refers to the homogeneous equation of radiative
transfer

i refers to the inhomogeneous equation of radia-
tive transfer

* complex conjugate
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A different view is taken in the present work. Here, the
radiative field in the medium is considered as a distinct
physical system that exchanges energy with the medium
by absorption and emission of radiation and causes an
energy flow different from a heat flow. The radiative field
is determined by the equation of radiative transfer together
with the boundary conditions for the field at the border of
the participating medium, i.e. the value of the incident
(spectral) irradiance. Additional boundary conditions for
the temperature field are needed if heat conduction occurs
in the medium. The focus here is not on the bodies confin-
ing the medium, and the sources of radiation outside the
medium just yield a given incident light flux.

In this view, the solution of radiative heat transfer prob-
lems combined with heat conduction in the medium
requires to discuss the solution theory of the equation of
radiative transfer. An approximate special solution of the
equation of radiative transfer for a given temperature dis-
tribution in the medium is sought by solving this equation
iteratively (Section 2). The contribution of this special solu-
tion to the radiative flow is, to the lowest order, given by
the diffusion approximation. With this derivation, it is
shown that the validity of the diffusion approximation does
not rest on the isotropy of scattering or on the isotropy of
the radiation field as it is assumed in Refs. [7,1] but
uniquely on the condition that the temperature gradient
and its spatial variations do not significantly change within
an absorption length for radiation. Near boundaries, how-
ever, the diffusion approximation usually not represents the
total radiative flow but must be completed with the flow
contribution originating from a solution of the homoge-
neous equation, the equation without emission term, which
is needed to match the boundary conditions for the radia-
tion field.
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In Section 3, these ideas are used to formulate a consis-
tent solution of the problem of combined heat conduction
and radiative transport. The resulting computational
scheme conserves the significant conceptual simplifications
and computational advantages of the original diffusion
approximation but avoids its internal inconsistencies.

For a numerical test of the diffusion approximation,
understood in the above sense, stationary heat conduction
and radiative transport in a gray slab with constant mate-
rial properties are considered within the two-flux approxi-
mation of the radiative field [9,1,2] (Section 4). The slab
is irradiated on one side and held at a constant temperature
on the other side. The exact solution amounts to the inte-
gration of a system of two ordinary differential equations
containing two free parameters (Section 5). These parame-
ters are determined by matching two boundary conditions,
one on every side of the slab. The numerical integration
demands a generalized ‘shooting’ algorithm [10, chapter
17] which fails for optically thick layers. In contrast, the
algorithm resulting from the diffusion approximation is
numerically robust and much faster for any physically rea-
sonable set of material parameters. Its results coincide with
the exact solution within a few percents for low values of
the absorption coefficient and within less than one percent
for higher values.
2. An approximate special solution of the equation of

radiative transfer

The stationary equation of radiative transfer [1,2]
expresses energy conservation for the radiant energy flow
and reads in an operator notation as follows:

~e � rL ¼ �ðaþ sÞLþ sULþ aLbb; ð1Þ

where Lð~x;~e; kÞ is the spectral radiance which depends on
the position ~x, the direction of light propagation ~e,
jj~ejj ¼ 1, and the wavelength k. The quantity að~x; kÞ denotes
the absorption coefficient, sð~x; kÞ the scattering coefficient.
U is an integral operator

U : f ð~eÞ !
I

dXð~e0ÞUð~e;~e0Þf ð~e0Þ; ð2Þ

whose kernel Uð~x;~e;~e0; kÞ is the phase function characteriz-
ing the scattering properties of the system. All material
properties may depend explicitly on the local temperature
T ð~xÞ. Lbb(T,k) denotes the blackbody radiance given by

LbbðT ; kÞ ¼
C1

k5

1

eC2=ðkT Þ � 1
; ð3Þ

where C1 and C2 are the first and the second radiation con-
stant. In the following, the dependence on the wavelength k
is no longer explicitly indicated.

The phase function of an isotropic material is rotation
invariant implying that it is a function of the scalar prod-
uct~e �~e0 only [2, 13.2]. This function may be expanded into
Legendre polynomials Pl

Uð~x;~e;~e0Þ ¼
X1
l¼0

2lþ 1

4p
/lð~xÞP lð~e �~e0Þ

¼
X1
l¼0

/lð~xÞ
Xl

m¼�l

Y l;mð~eÞY �l;mð~e0Þ; ð4Þ

where the addition theorem for the spherical harmonics
Yl,m [11, p. 28]

P lð~e �~e0Þ ¼
4p

2lþ 1

Xl

m¼�l

Y l;mð~eÞY �l;mð~e0Þ ð5Þ

has been used for the last step, Y* denoting the complex
conjugate of Y. With this last step, the representation of
the kernel U in terms of a complete system of eigenfunc-
tions has been achieved.

The phase function is normalized toI
dXð~e0ÞUð~x;~e;~e0; kÞ ¼ 1 ð6Þ

implying

/0ð~xÞ ¼ 1: ð7Þ
As a consequence, a symmetric radiation field, as e.g.
L bbðT ð~xÞÞ, produces no scattering effects. Integration of
Eq. (1) over all directions~e yields, therefore

r �~Jð~xÞ ¼ að~xÞ½4pLbbðT ð~xÞÞ � F ð~xÞ�; ð8Þ
where

~Jð~xÞ ¼
I

dXð~eÞ~eLð~x;~eÞ ð9Þ

is the spectral radiative flux of the radiation field and

F ð~xÞ ¼
I

dXð~eÞLð~x;~eÞ ð10Þ

is the product of the local light velocity in the medium with
the total spectral energy density of the radiation field [1, 13-
4] and [2, 9.9–9.10].

The equation of radiative transfer (1) is, in mathematical
terms, a linear integral–differential equation for the spectral
radiance L with a source term aLbb. The difference of two
solutions of this equation is a solution of Eq. (1) without
the source term, the homogeneous equation. Therefore,
the solution of Eq. (1) for given boundary conditions can
be written as the superposition of a special solution of
the full, inhomogeneous equation not necessarily fulfilling
the boundary conditions and of a solution of the homoge-
neous equation. The first part accounts for the source
while, with the second part, the actual boundary conditions
for the radiation field are matched. The solution theory
for the homogeneous equation is treated elsewhere in detail
(see e.g. [3] and [4]) and will not be discussed here. We
retain that such a solution is important only in a sur-
face region within a few absorption lengths from the
boundaries.
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In order to find an approximation to a special solution
in a systematic way we use Lbb = ULbb to get

L ¼ Lbb �W~e � rL; ð11Þ

where W is the operator

W ¼ ½aIþ sðI�UÞ��1
: ð12Þ

The kernel W of the operator W has an expansion similar to
the expansion of the kernel U

Wð~x;~e;~e0Þ ¼
X1
l¼0

wlð~xÞ
Xl

m¼�l

Y l;mð~eÞY �l;mð~e0Þ; ð13Þ

with

wlð~xÞ ¼
1

að~xÞ þ sð~xÞ½1� /lð~xÞ�
: ð14Þ

Eq. (11) is equivalent to Eq. (1), i.e. a solution of Eq. (1) is a
solution of Eq. (11) and vive versa, only if the operators W
and W�1 exist. This is true if all expressions að~xÞ þ sð~xÞ½1�
/lð~xÞ� are different from zero. Since always /0 = 1, the
following considerations do not apply if the absorption
coefficient að~xÞ goes to zero, i.e. when the medium does
not significantly absorb but mainly scatters.

Eq. (11) implies that the radiation field Li = Lbb(T0) is a
special solution of the inhomogeneous equation in a region
where T ð~xÞ ¼ T 0 ¼ const: If T ð~xÞ is not constant but slowly
varying with ~x iteratively solving Eq. (11) may provide an
approximate solution of the inhomogeneous equation:
inserting a Nth approximation L(N) into the right hand side
of Eq. (11) gives the next approximation L(N+1). One starts
with L(0) = Lbb. This procedure is equivalent to write Li as

Lið~x;~eÞ ¼
XN

n¼0

Lnð~x;~eÞ þ RN ð~x;~eÞ; ð15Þ

with

L0 ¼ Lbb; ð16Þ

Lnþ1 ¼ �W~e � rLn for n ¼ 0; 1; . . . ;N ; ð17Þ

RN ¼ LNþ1ð~x;~eÞ �W~e � rRN : ð18Þ

The first terms of the expansion Eq. (15) of the special solu-
tion Li are easily calculated if we take into account thatI

dXð~e0ÞWð~x;~e;~e0Þflð~e0Þ ¼ wlð~xÞflð~eÞ ð19Þ

for every function flð~eÞ which is a linear combination of
spherical harmonics Y l;mð~eÞ of a fixed degree l. This is a di-
rect consequence of the expansion (13) of the kernel W.

Since Y0,0 is the constant
ffiffiffiffi
1

4p

q
, the components ej of~e are lin-

ear combinations of Y1,m, and the components ejek � 1
3
dj;k,

j,k = 1,2,3 of the symmetric tensor with zero trace are lin-
ear combinations of the Y2,m one readily obtains

L1ð~x;~eÞ ¼ �w1ð~xÞ~e � rLbbðT ð~xÞÞ ð20Þ
and

L2ð~x;~eÞ ¼
X3

j;k¼1

w2ð~xÞ ejek �
1

3
dj;k

� �
þ 1

3
w0ð~xÞdjk

� �

� o

oxj

w1ð~xÞ
o

oxk

LbbðT ð~xÞÞ
� �

: ð21Þ

Eq. (15) with the recursion (16) and (17) is an expansion of
a special solution of the equation of radiative transfer in
terms of inverse powers of the coupling parameters a, s,
and U between radiation and matter. Higher order terms
of this expansion can also be systematically calculated
but involve always higher partial derivatives of LbbðT ð~xÞÞ
with respect to the space coordinates xj and the decompo-
sition into irreducible parts of always higher tensor prod-
ucts ei1 ; ei2 ; . . . ; ein . The corresponding expressions soon
become unduly complicated and one has to specify an ever
increasing number of functions wn restricting the practical
usefulness of this expansion to the lowest orders.

The above considerations are applied to the problem of
combined heat conduction and radiative energy transport
in Section 3. There, the temperature field T ð~xÞ is no longer
a function given from outside but is determined by the dif-
ferential equation for heat conduction including an interac-
tion term with the radiation field and the boundary
conditions for the temperature or the heat flow. Under
these circumstances, it is natural to consider the series cut
after the second term taking into account only L0 and L1.
The error RN committed by cutting a recursive series after
N terms is of the order of the first neglected term LN+1.
Cutting the series after L1 is, therefore, a valuable approx-
imation if jL2j � jL0 + L1j which amounts to the condition

jw1w2j ~e � rð~e � rLbbÞ þ
sð1� /2Þ

3a
DLbb

� �����
����

� jLbb � w1~e � rLbbj ð22Þ

for constant material properties which is the generic case. It
follows from the facts that the phase function is non-nega-
tive and the inequality jPl(n)j 6 1 for jnj 6 1 [12, 5.4.4] that
1 � Ul P 0 and, therefore, that wl P 1/a. As a conse-
quence, condition (22) is fulfilled if the inequalities

1

a
oLbb

oxi

����
����� Lbb and

1

a2

o
2Lbb

oxioxj

����
����� Lbb ð23Þ

for i, j = 1,2,3 are valid, i.e. if the temperature field T ð~xÞ
and the components of $T do not appreciably change with-
in a distance a�1. This condition may be fulfilled even for
small values of the absorption coefficient.

Calculating the quantities ~J and F from expansion (15)
up to N = 2 yields

~J ið~xÞ ¼ � 4p
3

w1ð~xÞrLbbðT ð~xÞÞ ð24Þ

and

F ið~xÞ ¼ 4pLbbðT ð~xÞÞ � w0ð~xÞr �~J ið~xÞ: ð25Þ
Eq. (25) reproduces Eq. (8).
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Eq. (24) is the diffusion approximation for the radiative
flux. Its validity is bound to the conditions (23) and it is
established here for arbitrary locally isotropic but not nec-
essarily isotropically scattering media. It is argued (see e.g.
[1]) that the diffusion approximation may fail near bound-
aries because the radiation field may be there far from
symmetric. In fact, the field Li is not far from symmetric
if the diffusion approximation applies as a consequence of
Eq. (23). However, the special solution Li must be com-
pleted with the solution of the homogeneous equation,
the equation without emission term, in order to match
the boundary conditions for the total radiation field yield-
ing an additional term to the radiative energy flow impor-
tant only in the boundary region. The latter contribution
and, hence, the total field may be far from symmetric
depending on the reflectance of the sample and on the
boundary conditions for the radiation field. But this asym-
metry does not necessarily impair the validity of the diffu-
sion approximation near boundaries, its validity being
bound rather to the requirement that the inequalities
(23) are fulfilled.
3. Combined heat conduction and radiative transport

Heat conduction and radiative transport are considered
for a solid at rest. For an isobaric process, energy conser-
vation is most easily expressed in terms of the enthalpy
per volume h

oh
ot
¼ cp

oT
ot
¼ �r �~J Q �

Z 1

0

dkr �~J ; ð26Þ

where cp denotes the specific heat per volume for constant
pressure. The terms on the right hand side account for the
change of the heat content of the volume element due to
the heat flow~J Q and due to energy exchange with the radi-
ative field.

For the heat flow, Fourier’s law is assumed

~J Q ¼ �jQrT ð27Þ

jQ being the coefficient of heat conduction. The radiative
energy flow

~J radð~xÞ ¼
Z 1

0

dk~Jð~x; kÞ ð28Þ

is the sum of a flow due to the special solution of the inho-
mogeneous equation and of the flow due to the solution of
the homogeneous equation

~J rad ¼~J i
rad þ~J h

rad: ð29Þ

If the approximation Eq. (24) is inserted into Eq. (28) the
radiative flow ~J i

rad can be written as

~J i
radð~xÞ ¼ �

16

3
rBT 3ð~xÞweff

1 ð~x; T ð~xÞÞrT ð~xÞ: ð30Þ
Here rB denotes the Stefan–Boltzmann constant and weff
1 is

defined by

weff
1 ð~x; T Þ ¼

R1
0

dkw1ð~x; k; T Þ o
oT LbbðT ; kÞR1

0
dk o

oT LbbðT ; kÞ
; ð31Þ

with Lbb given by Eq. (3). The identityZ 1

0

dkLbb ¼
1

4p
rBT 4 ð32Þ

has been used.
The result (30) corresponds to the one derived from the

diffusion approximation the quantity 1=weff
1 being the local

Rosseland mean attenuation coefficient [1, 15-3.2] now gen-
eralized to non-isotropically scattering media. But in con-
trast to previous treatments ([1, 15-4.2] and references
therein), conservation of heat is now expressed by a com-
pleted equation

cp
oT
ot
ð~x; tÞ ¼ r � ½jhrtð~x; T ð~x; tÞÞrT ð~x; tÞ�

þ
Z 1

0

dkað~x; T ð~x; tÞ; kÞ
I

dXð~eÞLhð~x; t;~e; kÞ;

ð33Þ

where Lh is the solution of the homogeneous equation of
radiative transfer with values

Lhð~x; t;~e; kÞ ¼ Lincð~x; t;~e; kÞ � LbbðT ð~x; tÞ; kÞ
� L1ð~x; t;~e; kÞ; ð34Þ

on boundary points ~x for all directions ~e of the incident
radiation Linc. The radiation field L1 is given by Eq. (20);
the contributions of L2 and of higher order terms to the
boundary conditions of Lh are neglected.

The coefficient

jhrtð~x; T Þ ¼ jQð~x; T Þ þ
16

3
rBT 3weff

1 ð~x; T Þ ð35Þ

describes a combined effect of heat conduction and radia-
tive transport. The function jhrtð~x; T Þ should, like the coef-
ficient of heat conductivity jQ, be considered as a
phenomenological quantity for which a measurement pro-
cedure has to be defined.

It is often reasonable to disregard the variation of the
absorption and the scattering coefficient with temperature
in the surface layer. The term containing Lh in Eq. (33) acts
then as an external source for the temperature field depend-
ing only on the physical conditions at the boundary. This is
a significant conceptual simplification and computational
advantage. The problem of the combined processes of heat
conduction and radiative transport reduces formally to a
heat conduction problem, now with a clearly temperature
dependent effective conductivity coefficient jhrt, and with
a volumetric external heat source due to the solution of
the homogeneous equation of radiative transfer important
only in a region near the surface.

As indicated by Eq. (23), the validity of the approxima-
tions used in this section rests on smoothness assumptions
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for the temperature fields which are difficult to discuss in
general terms since temperature is not externally given in
most cases but as the solution of a differential equation.
Therefore, the question arises how numerical predictions
using the above scheme compare with exact solutions for
realistic problems. An answer is not readily found as
numerical solutions of the full equation of radiative trans-
fer combined with the equations for heat conduction are
not easily achieved. For this reason the question of the
numerical reliability of the completed diffusion approxima-
tion proposed here is discussed in the framework of the
two-flux model for radiative transfer.
4. Diffusion approximation and the two-flux model

If spatial variations of the physical quantities occur only
in one direction x the two-flux model [9,13,14] is a valuable
simplifying approximation of the full equation of radiative
transfer. Here, the description of the radiative field is
reduced to two radiant energy flows E+ and E� in the posi-
tive and the negative x-direction, the irradiances. The two-
flux equations are conveniently expressed by

J ¼ Eþ � E�; ð36Þ
F ¼ 2ðEþ þ E�Þ ð37Þ

corresponding to the quantities defined by the equations (9)
and (10). J is again the net power flow of the radiation field
and F is the total energy density times the local velocity of
light if the radiation field is isotropic in each half space
around the positive and the negative x-directions which is
the basic assumption of the Milne–Eddington approxima-
tion [13,14].

With these variables, the two-flux equations can be writ-
ten as

dJ
dx
¼ �A

2
ðF � qÞ; ð38Þ

dF
dx
¼ �2ðAþ 2SÞJ ; ð39Þ

where A and S describe the absorption and scattering prop-
erties of the material. We take here A and S independent of
the wavelength (gray slab). The emission term q is then gi-
ven by

q ¼ 4rBT ðxÞ4: ð40Þ

For a slab of thickness X, 0 6 x 6 X, and if the absorption
and the scattering coefficient are independent of x the solu-
tion of the homogeneous equations (q = 0) is given by [2,
14.3]

J hðxÞ ¼ D�e�Wx þ Dþe�W ðX�xÞ; ð41Þ

F hðxÞ ¼ 2W
A
ðD�e�Wx � Dþe�W ðX�xÞÞ; ð42Þ

with

W ¼ A
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2S=A

p
; ð43Þ
the two coefficients D� and D+ being given by boundary
values of Jh and Fh.

An approximate solution of the Eqs. (38) and (39) is
found by solving these equations for J and F and by per-
forming an iteration process starting with J = 0, F = q.
The result of the first iteration step is

J i ¼ � 1

2ðAþ 2SÞ
dq
dx
; ð44Þ

F i ¼ qþ 1

A
d

dx
1

Aþ 2S
dq
dx

� �
: ð45Þ

These equations are identical with Eqs. (24) and (25) if one
sets

w0 ¼
2

A
; ð46Þ

w1 ¼
3

2

1

Aþ 2S
¼ weff

1 : ð47Þ
5. Numerical comparison of the diffusion approximation with

exact solutions

In order to test the validity of the diffusion approxima-
tion we consider stationary heat conduction and radiative
energy transport in a slab within the two-flux model. For
a stationary process in the slab, it is

J QðxÞ þ J radðxÞ ¼ J tot ¼ const: ð48Þ

where JQ and Jrad are given by Eqs. (27) and (28).
As a specific example, we study a gray slab of thickness

X, 0 6 x 6 X, with jQ, A, S independent of x, which is irra-
diated at the side x = 0 with the constant power density N

and held at temperature T = T1 at the boundary x = X. At
x = 0, the slab is thermally isolated, i.e. JQ(0) = 0. We fur-
ther assume at the boundary X that

E�ðX Þ ¼ q1EþðX Þ þ ð1� q1ÞrBT 4
1; ð49Þ

i.e. the flux entering the slab at the right border is equal
to the reflected part, with coefficient q1, of the flux leav-
ing the slab plus the thermally emitted flux of the
thermostat.

For a gray material we have

J rad ¼ J ð50Þ

and the problem is described by the following set of
equations

dT
dx
¼ J � J tot

jQ
; ð51Þ

dJ
dx
¼ �A

2
ðF � 4rBT 4Þ; ð52Þ

dF
dx
¼ �2ðAþ 2SÞJ ; ð53Þ
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with the boundary conditions

dT
dx
ð0Þ ¼ 0; ð54Þ

Jð0Þ ¼ J tot; ð55Þ
F ð0Þ ¼ 4N � 2J tot; ð56Þ
T ðX Þ ¼ T 1; ð57Þ

JðX Þ ¼ h
2
ðF ðX Þ � 4rBT 4

1Þ; ð58Þ

with

h ¼ 1� q1

1þ q1

: ð59Þ

For the sake of a numerical solution of these equations, the
variables J and F can be eliminated and the problem be for-
mulated in the variables T(x) and JQ(x) thus reducing the
number of unknown functions by one. Inserting

J ¼ J tot þ jQ
dT
dx
; ð60Þ

into Eq. (53) yields a differential equation that can be inte-
grated for constant material properties and one gets with
the boundary condition (56)

F ðxÞ ¼ 2f2N � ðAþ 2SÞjQ½T ðxÞ � T 0�
� J totð1þ ½Aþ 2S�xÞg; ð61Þ

where

T 0 ¼ T ð0Þ: ð62Þ
For the functions

sðxÞ ¼ T ðxÞ � T 0 ð63Þ
and JQ(x), the system of differential equations

ds
dx
¼ � J QðxÞ

jQ
; ð64Þ

dJ Q

dx
¼ A½2N � ðAþ 2SÞjQsðxÞ

� J totf1þ ðAþ 2SÞxg � 2rBfsðxÞ þ T 0g4� ð65Þ

is obtained with the boundary conditions

sð0Þ ¼ 0; ð66Þ
J Qð0Þ ¼ 0; ð67Þ
sðX Þ ¼ T 1 � T 0; ð68Þ
J QðX Þ ¼ J tot � h½2N � ðAþ 2SÞjQðT 1 � T 0Þ

� J totf1þ ðAþ 2SÞXg � 2rBT 4
1�: ð69Þ

The parameters T0 and Jtot must be determined in such a
way that the boundary conditions for s(X) and JQ(X) are
matched.

The following numerical example treats a shielding
problem: A body at a low temperature T1 should be pro-
tected against a high impinging radiative flux N. But the
same setting also describes an insulation problem: A body
at a high temperature T1 is isolated with respect to radia-
tive losses. The surface at x = 0 is then subjected only to
a low radiative flux e.g. from the surroundings at ambient
temperature. Note that temperature is continuous at the
position x = X, the boundary between two material bodies
in thermal contact. There is no need for jump boundary
conditions [7] of temperature.

5.1. Solution with diffusion approximation

With the diffusion approximation for the gray body, the
quantities J and F are approximated in lowest order by

J ¼ J h þ J i ¼ J h � 8rB

Aþ 2S
T 3 dT

dx
; ð70Þ

F ¼ F h þ F i ¼ F h þ 4rBT 4: ð71Þ

(see Eqs. (44) and (45)) where Jh(x) and Fh(x) are given
functions depending linearly on the two parameters D�
and D+ (see Eqs. (41) and (42)). The functions J(x) and
F(x) are, therefore, determined by T(x) and the two real
numbers D� and D+. With the above decomposition of
the radiative field, Eq. (48) can be integrated yieldingZ T ðxÞ

T ð0Þ
dT jhrtðT Þ ¼

Z x

0

dx0J hðx0Þ � xJ tot; ð72Þ

under the condition that jhrt, given by Eqs. (35) and (47),
depends only implicitly on x, i.e. only through the function
T(x). The left hand side accounts for the contributions of
JQ and Ji to Eq. (48). Note that for a gray body with con-
stant material propertiesZ x

0

dx0J hðx0Þ ¼ F hð0Þ � F hðxÞ
2ðAþ 2SÞ : ð73Þ

Using Eq. (48) and the boundary conditions (54)–(58) we
get the following set of boundary conditions for the vari-
ables Jh, Fh, T

1

2
F hð0Þ þ J hð0Þ þ 2rBT ð0Þ4 ¼ 2N ; ð74Þ

J hð0Þ ¼ J tot; ð75Þ
T ðX Þ ¼ T 1; ð76Þ
1

2
hF hðX Þ � ð1� gÞJ hðX Þ ¼ gJ tot; ð77Þ

with h given by Eq. (59) and the constant g by

g ¼ 8rBT 3
1

ðAþ 2SÞjQ þ 8rBT 3
1

¼ J iðX Þ
J QðX Þ þ J iðX Þ

6 1: ð78Þ

The quantity g parametrises the quotient of the heat flow
JQ(X) and of the radiative flow due to the special solution
Ji(X) at the border x = X. Eq. (77) follows from the obser-
vation that only two of the four quantities JQ, Ji, Jh, Jtot

can be independently chosen because of Eq. (78) and of
the energy balance JQ(x) + Ji(x) + Jh(x) = Jtot. To get
Eq. (77) the quantity J = Ji + Jh is expressed by a linear
combination of Jh and Jtot.

The diffusion approximation allows for the analytical
integration of all differential equations involved. Eq. (72)
is the defining equation of the function T(x) in terms of
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the four parameters D�, D+, T(0), and Jtot. These parame-
ters can be calculated from the four boundary conditions
(74)–(77) and from Eq. (72) at x = X. The resulting set of
equations is linear in D�, D+, Jtot and requires to find
the root of a non-linear function to determine the surface
temperature T(0). The four parameters once determined,
Eq. (72) gives the value of T(x) as the root of a non-linear
function. For this task, fast and reliable algorithms are
available (see e.g. [10]).

A numerical example calculated with the diffusion
approximation is represented in Fig. 1. The figure shows
the temperature T, the total energy flow Jtot across the
layer, the radiative flow Jrad, its contribution Jh due to
the solution of the homogeneous two-flux equations, the
flow quantity F that indicates the local radiative energy
density, and its homogeneous part Fh. The difference
between Jtot and Jrad is the heat flow JQ, the difference
between Jrad and Jh the contribution Ji of the diffusion
approximation. A 5 mm thick layer is considered irradiated
at x = 0 with 9.073 � 105 W m�2 corresponding to the
total irradiance of a black surface at 2000 K. The layer is
kept at 300 K at the other boundary. The thermostat per-
fectly reflects radiation (q1 = 1.0). The absorption coeffi-
cient of the material is 1000 m�1, the scattering coefficient
equals 10612 m�1 yielding a reflection coefficient of the
material of 0.65, and the coefficient of heat conduction is
0.2 W K�1 m�1. Rather low values for the absorption coef-
ficient and for the coefficient of heat conduction have been
chosen in this example in order to make the different con-
tributions to the radiative field and to the total energy flow
through the sample clearly visible.

The physical radiative properties of the system are given
by the functions Jrad(x) and F(x) the solutions Jh and Fh

being auxiliary quantities that are important only near
the boundaries but are indispensable there for a coherent
description. Since there is no heat flow across the hot
boundary in our example the temperature gradient is zero
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Fig. 1. Example of a numerical calculation using the diffusion approxi-
mation. All radiative quantities and the heat flow refer to the left scale,
temperature to the right scale. F and Fh are rescaled with a factor 0.04 in
order to get a compact diagram.
at this boundary implying that the contribution Ji of the
diffusion approximation to the radiative energy flow van-
ishes there and the total energy flow is carried by Jh.
Clearly, the diffusion approximation cannot properly
account for the physical situation here if the contribution
of the homogeneous two-flux equations is disregarded.

It can be seen in Fig. 1 how the heat flow JQ is built up
near the hot surface at the expense of the radiative flow
Jrad. Near the cold surface, the quantity Jh attains a slightly
negative value of � �200 W m�2 in order to compensate
for the positive value of Ji enforced by the negative temper-
ature gradient since Jrad(X)=0. Near the hot boundary, the
ratio Ji/JQ = 0.661, at the cold boundary Ji/JQ = 2.76
� 10�3. With the values for A and S chosen, W�1 equals
0.212 mm. At the position x = 1.0 mm, corresponding to
about 4.7 �W, the homogeneous solution is already small
compared with its initial value. The quantity Fh attains its
minimal value of 0.59 W m�2 at x = 3.13 mm and rises to
2031 W m�2 at the cold boundary which accounts for
about 2/3 of the value of F at this position.

5.2. Numerical comparison

For the sake of a numerical comparison of the exact
model described by the Eqs. (51)–(59) or Eqs. (63)–(69),
respectively, with the diffusion approximation described in
Section 5.1, a set of material properties has been chosen that
is geared to the values of semi-crystalline zirconia. The
following numerical values of the material parameters and
the boundary conditions are used for the computations:
incident radiative flow N = 9.073 � 105 W m�2, tempera-
ture of thermostat T1 = 300 K, reflectivity of thermostat
q1 = 1.0, coefficient of heat conduction kQ = 2.0 W K�1

m�1, scattering coefficient divided by absorption coefficient
S/A = 10.612 corresponding to a reflection coefficient 0.65
of an infinitely thick layer. This value is the mean reflection
coefficient of yttria stabilised semi-crystalline zirconia
below 1800 K [15]. The incident radiative flow N corre-
sponds to the total irradiance of a black surface at
2000 K. A typical value of the absorption coefficient for zir-
conia at low temperature is A = 104 m�1 [16]. For the
numerical study, the value of the absorption coefficient
was varied keeping the quotient S/A constant and a set of
five different layer thicknesses were considered covering
the range of a semitransparent to a completely opaque
layer: d = 0.1, 0.2, 1, 5 and 10 mm.

The implementation of the diffusion approximation into
computer code results in a fast and reliable program that
works well for every physically reasonable input. The pro-
gram for the exact model amounts to find a root in the
two-dimensional parameter space (T0,Jtot), the boundary
conditions (68) and (69) being the target functions. For
given initial values of T0 and Jtot, s(X) and JQ(X) are the
result of the numerical integration of the differential Eqs.
(64) and (65) these equations also being dependent on T0

and Jtot. All multi-dimensional root finders require suffi-
ciently close starting values for convergence. It was found
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that the diffusion approximation provides such sufficiently
close starting values at least for low absorption coefficients.
Therefore, the following procedure was adopted to calcu-
late the exact solution: if the diffusion approximation does
not provide sufficiently close initial values of T0 and Jtot for
the envisaged value Afinal of the absorption coefficient a
decreasing sequence of trial A-values is chosen until the
root finder converges. Starting from this value the absorp-
tion coefficient is augmented step by step the roots of the
previous step always being the starting values of T0 and Jtot

for the next step until, hopefully, the desired value Afinal

has been reached.
However, for a given layer thickness d, it was found that

there exists an upper bound Amax for the values of the
absorption coefficient accessible in this way. This bound
is given by the condition 10.0 6 d �W(Amax) 6 11.5 for
the chosen physical properties and layer thicknesses. This
behaviour can be explained by noting that the analytical
solution of the homogeneous two-flux equations is also
part of the solution of the inhomogeneous equations for
a given temperature field. Integrating numerically these
equations from one side implies that the solution contains
an exponentially increasing part. A small change of the ini-
tial conditions or likewise numerical scatter at the start is
blown up exponentially leading to a breakdown of the root
finding algorithm for high values of the optical thickness of
the layer. In physical terms, one may state that it is not pos-
sible to target radiative boundary conditions across an
optically thick layer. This is a principal limitation of the
analytic approach formulated by the Eqs. (64)–(69). In
contrast, the solutions calculated with the diffusion approx-
imation are not subjected to such restrictions.

For the numerical comparison, the relative differences of
the total energy flow across the layer calculated with the
exact model and with the diffusion approximation

DJ rel ¼ 1� J dif:ap:
tot

J exact
tot

; ð79Þ

in function of the absorption coefficient were chosen as
indicators for the quantitative agreement of the two ap-
proaches (see Fig. 2). The parameter sweep starts with
the rather low value A = 10 m�1 of the absorption coeffi-
cient for every layer thickness and extends to the aforemen-
tioned upper bounds numerically accessible for the exact
model. It can be seen that the relative deviations typically
decrease with increasing values of the absorption coefficient
A except for the two thickest layers where there is, first, a
slight increase before the relative differences start to de-
crease. For each value of the layer thickness, the upper
bound Amax limiting the numerical calculation of the exact
solution is indicated by a sharply increasing scatter of DJrel

if A approaches these bounds. The quantity jDJrelj de-
creases roughly proportional to A�1 from jDJrelj � 5 �
10�2 at A = 10 m�1 to jDJrelj � 5 � 10�4 at A = 103 m�4

for the layers with 0.1, 0.2 and 1.0 mm thickness and,
further, to jDJrelj � 3 � 10�5 at A = 104 m�1 for the two
thinnest layers. For the 5 mm and the 10 mm layer,
jDJrelj � 5 � 10�2 for A = 10 m�1 and decreases first in
both cases but increases then slightly reaching a flat maxi-
mum at A � 80 m�1 and A � 200 m�1 with deviations of
5% and 2%, respectively, of the diffusion approximation
from the exact solution. We conclude that the diffusion
approximation is reliable for the problem discussed for
physically relevant values of the absorption coefficient
(A P 103 m�1).

The numerical comparison shows that the solution using
the diffusion approximation is close to the exact solution
for physically relevant values of the material parameters.
The computational procedure used for the solution with
the diffusion approximation reveals, further, distinct
numerical advantages over the procedure for the exact
problem. The same structural advantages of the diffusion
approximation provide fast and reliable numerical algo-
rithms also for time dependent heat and radiative transport
problems [17].
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